Papers
Topics
Authors
Recent
2000 character limit reached

Spatial Dependency Parsing for Semi-Structured Document Information Extraction

Published 1 May 2020 in cs.CL and cs.LG | (2005.00642v3)

Abstract: Information Extraction (IE) for semi-structured document images is often approached as a sequence tagging problem by classifying each recognized input token into one of the IOB (Inside, Outside, and Beginning) categories. However, such problem setup has two inherent limitations that (1) it cannot easily handle complex spatial relationships and (2) it is not suitable for highly structured information, which are nevertheless frequently observed in real-world document images. To tackle these issues, we first formulate the IE task as spatial dependency parsing problem that focuses on the relationship among text tokens in the documents. Under this setup, we then propose SPADE (SPAtial DEpendency parser) that models highly complex spatial relationships and an arbitrary number of information layers in the documents in an end-to-end manner. We evaluate it on various kinds of documents such as receipts, name cards, forms, and invoices, and show that it achieves a similar or better performance compared to strong baselines including BERT-based IOB taggger.

Citations (86)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.