Papers
Topics
Authors
Recent
2000 character limit reached

Explainable Link Prediction for Emerging Entities in Knowledge Graphs

Published 1 May 2020 in cs.CL | (2005.00637v2)

Abstract: Despite their large-scale coverage, cross-domain knowledge graphs invariably suffer from inherent incompleteness and sparsity. Link prediction can alleviate this by inferring a target entity, given a source entity and a query relation. Recent embedding-based approaches operate in an uninterpretable latent semantic vector space of entities and relations, while path-based approaches operate in the symbolic space, making the inference process explainable. However, these approaches typically consider static snapshots of the knowledge graphs, severely restricting their applicability for evolving knowledge graphs with newly emerging entities. To overcome this issue, we propose an inductive representation learning framework that is able to learn representations of previously unseen entities. Our method finds reasoning paths between source and target entities, thereby making the link prediction for unseen entities interpretable and providing support evidence for the inferred link.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.