Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Suitability of Semantic Spaces as Word Association Models for the Extraction of Semantic Relationships (2004.14265v1)

Published 29 Apr 2020 in cs.CL, cs.AI, and cs.IR

Abstract: Given the recent advances and progress in NLP, extraction of semantic relationships has been at the top of the research agenda in the last few years. This work has been mainly motivated by the fact that building knowledge graphs (KG) and bases (KB), as a key ingredient of intelligent applications, is a never-ending challenge, since new knowledge needs to be harvested while old knowledge needs to be revised. Currently, approaches towards relation extraction from text are dominated by neural models practicing some sort of distant (weak) supervision in machine learning from large corpora, with or without consulting external knowledge sources. In this paper, we empirically study and explore the potential of a novel idea of using classical semantic spaces and models, e.g., Word Embedding, generated for extracting word association, in conjunction with relation extraction approaches. The goal is to use these word association models to reinforce current relation extraction approaches. We believe that this is a first attempt of this kind and the results of the study should shed some light on the extent to which these word association models can be used as well as the most promising types of relationships to be considered for extraction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)