Papers
Topics
Authors
Recent
2000 character limit reached

A Fast 3D CNN for Hyperspectral Image Classification

Published 29 Apr 2020 in eess.IV and cs.CV | (2004.14152v1)

Abstract: Hyperspectral imaging (HSI) has been extensively utilized for a number of real-world applications. HSI classification (HSIC) is a challenging task due to high inter-class similarity, high intra-class variability, overlapping, and nested regions. A 2D Convolutional Neural Network (CNN) is a viable approach whereby HSIC highly depends on both Spectral-Spatial information, therefore, 3D CNN can be an alternative but highly computational complex due to the volume and spectral dimensions. Furthermore, these models do not extract quality feature maps and may underperform over the regions having similar textures. Therefore, this work proposed a 3D CNN model that utilizes both spatial-spectral feature maps to attain good performance. In order to achieve the said performance, the HSI cube is first divided into small overlapping 3D patches. Later these patches are processed to generate 3D feature maps using a 3D kernel function over multiple contiguous bands that persevere the spectral information as well. Benchmark HSI datasets (Pavia University, Salinas and Indian Pines) are considered to validate the performance of our proposed method. The results are further compared with several state-of-the-art methods.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.