Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entity Candidate Network for Whole-Aware Named Entity Recognition

Published 29 Apr 2020 in cs.CL | (2004.14145v1)

Abstract: Named Entity Recognition (NER) is a crucial upstream task in NLP. Traditional tag scheme approaches offer a single recognition that does not meet the needs of many downstream tasks such as coreference resolution. Meanwhile, Tag scheme approaches ignore the continuity of entities. Inspired by one-stage object detection models in computer vision (CV), this paper proposes a new no-tag scheme, the Whole-Aware Detection, which makes NER an object detection task. Meanwhile, this paper presents a novel model, Entity Candidate Network (ECNet), and a specific convolution network, Adaptive Context Convolution Network (ACCN), to fuse multi-scale contexts and encode entity information at each position. ECNet identifies the full span of a named entity and its type at each position based on Entity Loss. Furthermore, ECNet is regulable between the highest precision and the highest recall, while the tag scheme approaches are not. Experimental results on the CoNLL 2003 English dataset and the WNUT 2017 dataset show that ECNet outperforms other previous state-of-the-art methods.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.