Distributions of Distances and Volumes of Balls in Homogeneous Lens Spaces (2004.13196v1)
Abstract: Lens spaces are a family of manifolds that have been a source of many interesting phenomena in topology and differential geometry. Their concrete construction, as quotients of odd-dimensional spheres by a free linear action of a finite cyclic group, allows a deeper analysis of their structure. In this paper, we consider the problem of moments for the distance function between randomly selected pairs of points on homogeneous three-dimensional lens spaces. We give a derivation of a recursion relation for the moments, a formula for the $k$th moment, and a formula for the moment generating function, as well as an explicit formula for the volume of balls of all radii in these lens spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.