Papers
Topics
Authors
Recent
2000 character limit reached

Learning Based Hybrid Beamforming for Millimeter Wave Multi-User MIMO Systems

Published 27 Apr 2020 in eess.SP and cs.LG | (2004.12917v1)

Abstract: Hybrid beamforming (HBF) design is a crucial stage in millimeter wave (mmWave) multi-user multi-input multi-output (MU-MIMO) systems. However, conventional HBF methods are still with high complexity and strongly rely on the quality of channel state information. We propose an extreme learning machine (ELM) framework to jointly optimize transmitting and receiving beamformers. Specifically, to provide accurate labels for training, we first propose an factional-programming and majorization-minimization based HBF method (FP-MM-HBF). Then, an ELM based HBF (ELM-HBF) framework is proposed to increase the robustness of beamformers. Both FP-MM-HBF and ELM-HBF can provide higher system sum-rate compared with existing methods. Moreover, ELM-HBF cannot only provide robust HBF performance, but also consume very short computation time.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.