Papers
Topics
Authors
Recent
2000 character limit reached

Counterexamples to conjectures by Gross, Mansour and Tucker on partial-dual genus polynomials of ribbon graphs

Published 27 Apr 2020 in math.CO | (2004.12564v2)

Abstract: Gross, Mansour and Tucker introduced the partial-dual orientable genus polynomial and the partial-dual Euler genus polynomial. They computed these two partial-dual genus polynomials of four families of ribbon graphs, posed some research problems and made some conjectures. In this paper, we introduce the notion of signed sequences of bouquets and obtain the partial-dual Euler genus polynomials for all ribbon graphs with the number of edges less than 4 and the partial-dual orientable genus polynomials for all orientable ribbon graphs with the number of edges less than 5 in terms of signed sequences. We check all the conjectures and find a counterexample to the Conjecture 3.1 in their paper: There is no orientable ribbon graph having a non-constant partial-dual genus polynomial with only one non-zero coefficient. Motivated by this counterexample, we further find an infinite family of counterexamples to the conjecture. Moreover, we find a counterexample to the Conjecture 5.3 in their paper: The partial-dual Euler-genus polynomial for any non-orientable ribbon graph is interpolating.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.