Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Likelihood Estimation of Stochastic Frontier Models with Endogeneity (2004.12369v3)

Published 26 Apr 2020 in econ.EM and stat.AP

Abstract: We propose and study a maximum likelihood estimator of stochastic frontier models with endogeneity in cross-section data when the composite error term may be correlated with inputs and environmental variables. Our framework is a generalization of the normal half-normal stochastic frontier model with endogeneity. We derive the likelihood function in closed form using three fundamental assumptions: the existence of control functions that fully capture the dependence between regressors and unobservables; the conditional independence of the two error components given the control functions; and the conditional distribution of the stochastic inefficiency term given the control functions being a folded normal distribution. We also provide a Battese-Coelli estimator of technical efficiency. Our estimator is computationally fast and easy to implement. We study some of its asymptotic properties, and we showcase its finite sample behavior in Monte-Carlo simulations and an empirical application to farmers in Nepal.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.