Papers
Topics
Authors
Recent
2000 character limit reached

Improved Adversarial Training via Learned Optimizer

Published 25 Apr 2020 in cs.LG, cs.CR, and stat.ML | (2004.12227v1)

Abstract: Adversarial attack has recently become a tremendous threat to deep learning models. To improve the robustness of machine learning models, adversarial training, formulated as a minimax optimization problem, has been recognized as one of the most effective defense mechanisms. However, the non-convex and non-concave property poses a great challenge to the minimax training. In this paper, we empirically demonstrate that the commonly used PGD attack may not be optimal for inner maximization, and improved inner optimizer can lead to a more robust model. Then we leverage a learning-to-learn (L2L) framework to train an optimizer with recurrent neural networks, providing update directions and steps adaptively for the inner problem. By co-training optimizer's parameters and model's weights, the proposed framework consistently improves the model robustness over PGD-based adversarial training and TRADES.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.