Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

From orders to prices: A stochastic description of the limit order book to forecast intraday returns (2004.11953v2)

Published 24 Apr 2020 in q-fin.TR, econ.EM, q-fin.MF, q-fin.ST, and stat.AP

Abstract: We propose a microscopic model to describe the dynamics of the fundamental events in the limit order book (LOB): order arrivals and cancellations. It is based on an operator algebra for individual orders and describes their effect on the LOB. The model inputs are arrival and cancellation rate distributions that emerge from individual behavior of traders, and we show how prices and liquidity arise from the LOB dynamics. In a simulation study we illustrate how the model works and highlight its sensitivity with respect to assumptions regarding the collective behavior of market participants. Empirically, we test the model on a LOB snapshot of XETRA, estimate several linearized model specifications, and conduct in- and out-of-sample forecasts.The in-sample results based on contemporaneous information suggest that our model describes returns very well, resulting in an adjusted $R2$ of roughly 80%. In the more realistic setting where only past information enters the model, we observe an adjusted $R2$ around 15%. The direction of the next return can be predicted (out-of-sample) with an accuracy above 75% for time horizons below 10 minutes. On average, we obtain an RMSPE that is 10 times lower than values documented in the literature.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube