Generalized Assignment for Multi-Robot Systems via Distributed Branch-And-Price (2004.11857v3)
Abstract: In this paper, we consider a network of agents that has to self-assign a set of tasks while respecting resource constraints. One possible formulation is the Generalized Assignment Problem, where the goal is to find a maximum payoff while satisfying capability constraints. We propose a purely distributed branch-and-price algorithm to solve this problem in a cooperative fashion. Inspired by classical (centralized) branch-and-price schemes, in the proposed algorithm each agent locally solves small linear programs, generates columns by solving simple knapsack problems, and communicates to its neighbors a fixed number of basic columns. We prove finite-time convergence of the algorithm to an optimal solution of the problem. Then, we apply the proposed scheme to a generalized assignment scenario in which a team of robots has to serve a set of tasks. We implement the proposed algorithm in a ROS testbed and provide experiments for a team of heterogeneous robots solving the assignment problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.