Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic topic modeling of the COVID-19 Twitter narrative among U.S. governors and cabinet executives

Published 19 Apr 2020 in cs.SI and physics.soc-ph | (2004.11692v1)

Abstract: A combination of federal and state-level decision making has shaped the response to COVID-19 in the United States. In this paper we analyze the Twitter narratives around this decision making by applying a dynamic topic model to COVID-19 related tweets by U.S. Governors and Presidential cabinet members. We use a network Hawkes binomial topic model to track evolving sub-topics around risk, testing and treatment. We also construct influence networks amongst government officials using Granger causality inferred from the network Hawkes process.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.