Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Transformation of Mean Opinion Scores to Avoid Misleading of Ranked based Statistical Techniques (2004.11490v1)

Published 23 Apr 2020 in cs.MM

Abstract: The rank correlation coefficients and the ranked-based statistical tests (as a subset of non-parametric techniques) might be misleading when they are applied to subjectively collected opinion scores. Those techniques assume that the data is measured at least at an ordinal level and define a sequence of scores to represent a tied rank when they have precisely an equal numeric value. In this paper, we show that the definition of tied rank, as mentioned above, is not suitable for Mean Opinion Scores (MOS) and might be misleading conclusions of rank-based statistical techniques. Furthermore, we introduce a method to overcome this issue by transforming the MOS values considering their $95\%$ Confidence Intervals. The rank correlation coefficients and ranked-based statistical tests can then be safely applied to the transformed values. We also provide open-source software packages in different programming languages to utilize the application of our transformation method in the quality of experience domain.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.