Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Optimal Ergodic Control of Linear Stochastic Differential Equations with Quadratic Cost Functionals Having Indefinite Weights (2004.11088v1)

Published 23 Apr 2020 in math.OC

Abstract: An optimal ergodic control problem (EC problem, for short) is investigated for a linear stochastic differential equation with quadratic cost functional. Constant nonhomogeneous terms, not all zero, appear in the state equation, which lead to the asymptotic limit of the state non-zero. Under the stabilizability condition, for any (admissible) closed-loop strategy, an invariant measure is proved to exist, which makes the ergodic cost functional well-defined and the EC problem well-formulated. Sufficient conditions, including those allowing the weighting matrices of cost functional to be indefinite, are introduced for finiteness and solvability for the EC problem. Some comparisons are made between the solvability of EC problem and the closed-loop solvability of stochastic linear quadratic optimal control problem in the infinite horizon. Regularized EC problem is introduced to be used to obtain the optimal value of the EC problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.