Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Semi-Supervised Models via Data Augmentationfor Classifying Interactive Affective Responses (2004.10972v1)

Published 23 Apr 2020 in cs.CL

Abstract: We present semi-supervised models with data augmentation (SMDA), a semi-supervised text classification system to classify interactive affective responses. SMDA utilizes recent transformer-based models to encode each sentence and employs back translation techniques to paraphrase given sentences as augmented data. For labeled sentences, we performed data augmentations to uniform the label distributions and computed supervised loss during training process. For unlabeled sentences, we explored self-training by regarding low-entropy predictions over unlabeled sentences as pseudo labels, assuming high-confidence predictions as labeled data for training. We further introduced consistency regularization as unsupervised loss after data augmentations on unlabeled data, based on the assumption that the model should predict similar class distributions with original unlabeled sentences as input and augmented sentences as input. Via a set of experiments, we demonstrated that our system outperformed baseline models in terms of F1-score and accuracy.

Citations (18)

Summary

We haven't generated a summary for this paper yet.