Papers
Topics
Authors
Recent
2000 character limit reached

ARMA Models for Zero Inflated Count Time Series

Published 22 Apr 2020 in math.ST, stat.AP, and stat.TH | (2004.10732v3)

Abstract: Zero inflation is a common nuisance while monitoring disease progression over time. This article proposes a new observation driven model for zero inflated and over-dispersed count time series. The counts given the past history of the process and available information on covariates is assumed to be distributed as a mixture of a Poisson distribution and a distribution degenerate at zero, with a time dependent mixing probability, $\pi_t$. Since, count data usually suffers from overdispersion, a Gamma distribution is used to model the excess variation, resulting in a zero inflated Negative Binomial (NB) regression model with mean parameter $\lambda_t$. Linear predictors with auto regressive and moving average (ARMA) type terms, covariates, seasonality and trend are fitted to $\lambda_t$ and $\pi_t$ through canonical link generalized linear models. Estimation is done using maximum likelihood aided by iterative algorithms, such as Newton Raphson (NR) and Expectation and Maximization (EM). Theoretical results on the consistency and asymptotic normality of the estimators are given. The proposed model is illustrated using in-depth simulation studies and a dengue data set.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.