Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spectrally Consistent UNet for High Fidelity Image Transformations

Published 22 Apr 2020 in eess.IV, cs.GR, cs.LG, and stat.ML | (2004.10696v2)

Abstract: Convolutional Neural Networks (CNNs) are the current de-facto models used for many imaging tasks due to their high learning capacity as well as their architectural qualities. The ubiquitous UNet architecture provides an efficient and multi-scale solution that combines local and global information. Despite the success of UNet architectures, the use of upsampling layers can cause artefacts. In this work, a method for assessing the structural biases of UNets and the effects these have on the outputs is presented, characterising their impact in the Fourier domain. A new upsampling module is proposed, based on a novel use of the Guided Image Filter, that provides spectrally consistent outputs when used in a UNet architecture, forming the Guided UNet (GUNet). The GUNet architecture is applied and evaluated for example applications of inverse tone mapping/dynamic range expansion and colourisation from grey-scale images and is shown to provide higher fidelity outputs.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.