A multi-dimensional version of Lamperti's relation and the Matsumoto-Yor opposite drift theorem
Abstract: A classic result on the 1-dimensional Brownian motion shows that conditionally on its first hitting time of 0, it has the distribution of a 3-dimensional Bessel bridge. By applying a certain time-change to this result, Matsumoto and Yor showed a theorem giving a relation between Brownian motions with opposite drifts. The relevant time change is the one appearing in Lamperti's relation. Sabot and Zeng showed that a family of Brownian motions with interacting drifts, conditioned on the vector of hitting times of 0, also has the distribution of independent 3-dimensional Bessel bridges. Moreover, the distribution of these hitting times is related to a random potential that appears in the study of the vertex-reinforced jump process. The aim of this paper is to prove a multivariate version of the Matsumoto-Yor opposite drift theorem, by applying a Lamperti-type time change to the previous family of interacting Brownian motions. Difficulties arise since the time change progresses at different speeds on different coordinates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.