Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DRMap: A Generic DRAM Data Mapping Policy for Energy-Efficient Processing of Convolutional Neural Networks (2004.10341v1)

Published 21 Apr 2020 in cs.AR and cs.LG

Abstract: Many convolutional neural network (CNN) accelerators face performance- and energy-efficiency challenges which are crucial for embedded implementations, due to high DRAM access latency and energy. Recently, some DRAM architectures have been proposed to exploit subarray-level parallelism for decreasing the access latency. Towards this, we present a design space exploration methodology to study the latency and energy of different mapping policies on different DRAM architectures, and identify the pareto-optimal design choices. The results show that the energy-efficient DRAM accesses can be achieved by a mapping policy that orderly prioritizes to maximize the row buffer hits, bank- and subarray-level parallelism.

Citations (21)

Summary

We haven't generated a summary for this paper yet.