Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

An Asympirical Smoothing Parameters Selection Approach for Smoothing Spline ANOVA Models in Large Samples (2004.10271v1)

Published 21 Apr 2020 in stat.ME

Abstract: Large samples have been generated routinely from various sources. Classic statistical models, such as smoothing spline ANOVA models, are not well equipped to analyze such large samples due to expensive computational costs. In particular, the daunting computational costs of selecting smoothing parameters render smoothing spline ANOVA models impractical. In this article, we develop an asympirical, i.e., asymptotic and empirical, smoothing parameters selection approach for smoothing spline ANOVA models in large samples. The idea of this approach is to use asymptotic analysis to show that the optimal smoothing parameter is a polynomial function of the sample size and an unknown constant. The unknown constant is then estimated through empirical subsample extrapolation. The proposed method significantly reduces the computational costs of selecting smoothing parameters in high-dimensional and large samples. We show smoothing parameters chosen by the proposed method tend to the optimal smoothing parameters that minimise a specific risk function. In addition, the estimator based on the proposed smoothing parameters achieves the optimal convergence rate. Extensive simulation studies demonstrate the numerical advantage of the proposed method over competing methods in terms of relative efficacies and running time. On an application to molecular dynamics data with nearly one million observations, the proposed method has the best prediction performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.