Papers
Topics
Authors
Recent
2000 character limit reached

Frequency-Weighted Robust Tensor Principal Component Analysis

Published 21 Apr 2020 in cs.CV | (2004.10068v2)

Abstract: Robust tensor principal component analysis (RTPCA) can separate the low-rank component and sparse component from multidimensional data, which has been used successfully in several image applications. Its performance varies with different kinds of tensor decompositions, and the tensor singular value decomposition (t-SVD) is a popularly selected one. The standard t-SVD takes the discrete Fourier transform to exploit the residual in the 3rd mode in the decomposition. When minimizing the tensor nuclear norm related to t-SVD, all the frontal slices in frequency domain are optimized equally. In this paper, we incorporate frequency component analysis into t-SVD to enhance the RTPCA performance. Specially, different frequency bands are unequally weighted with respect to the corresponding physical meanings, and the frequency-weighted tensor nuclear norm can be obtained. Accordingly we rigorously deduce the frequency-weighted tensor singular value threshold operator, and apply it for low rank approximation subproblem in RTPCA. The newly obtained frequency-weighted RTPCA can be solved by alternating direction method of multipliers, and it is the first time that frequency analysis is taken in tensor principal component analysis. Numerical experiments on synthetic 3D data, color image denoising and background modeling verify that the proposed method outperforms the state-of-the-art algorithms both in accuracy and computational complexity.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.