Papers
Topics
Authors
Recent
2000 character limit reached

Fast and accurate evaluation of dual Bernstein polynomials

Published 21 Apr 2020 in math.NA and cs.NA | (2004.09801v1)

Abstract: Dual Bernstein polynomials find many applications in approximation theory, computational mathematics, numerical analysis and computer-aided geometric design. In this context, one of the main problems is fast and accurate evaluation both of these polynomials and their linear combinations. New simple recurrence relations of low order satisfied by dual Bernstein polynomials are given. In particular, a first-order non-homogeneous recurrence relation linking dual Bernstein and shifted Jacobi orthogonal polynomials has been obtained. When used properly, it allows to propose fast and numerically efficient algorithms for evaluating all $n+1$ dual Bernstein polynomials of degree $n$ with $O(n)$ computational complexity.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.