Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 483 tok/s Pro
Kimi K2 242 tok/s Pro
2000 character limit reached

Parameter estimation of path-dependent McKean-Vlasov stochastic differential equations (2004.09580v2)

Published 20 Apr 2020 in math.PR

Abstract: The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likelihood estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)