Papers
Topics
Authors
Recent
Search
2000 character limit reached

From graph cuts to isoperimetric inequalities: Convergence rates of Cheeger cuts on data clouds

Published 20 Apr 2020 in math.SP, cs.CG, cs.LG, math.AP, and stat.ML | (2004.09304v2)

Abstract: In this work we study statistical properties of graph-based clustering algorithms that rely on the optimization of balanced graph cuts, the main example being the optimization of Cheeger cuts. We consider proximity graphs built from data sampled from an underlying distribution supported on a generic smooth compact manifold $M$. In this setting, we obtain high probability convergence rates for both the Cheeger constant and the associated Cheeger cuts towards their continuum counterparts. The key technical tools are careful estimates of interpolation operators which lift empirical Cheeger cuts to the continuum, as well as continuum stability estimates for isoperimetric problems. To our knowledge the quantitative estimates obtained here are the first of their kind.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.