Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learned SPARCOM: Unfolded Deep Super-Resolution Microscopy

Published 20 Apr 2020 in eess.IV | (2004.09270v2)

Abstract: The use of photo-activated fluorescent molecules to create long sequences of low emitter-density diffraction-limited images enables high-precision emitter localization, but at the cost of low temporal resolution. We suggest combining SPARCOM, a recent high-performing classical method, with model-based deep learning, using the algorithm unfolding approach, to design a compact neural network incorporating domain knowledge. Our results show that we can obtain super-resolution imaging from a small number of high emitter density frames without knowledge of the optical system and across different test sets using the proposed learned SPARCOM (LSPARCOM) network. We believe LSPARCOM can pave the way to interpretable, efficient live-cell imaging in many settings, and find broad use in single-molecule localization microscopy of biological structures.

Citations (39)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.