Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

A combinatorial expansion of vertical-strip LLT polynomials in the basis of elementary symmetric functions (2004.09198v2)

Published 20 Apr 2020 in math.CO and math.RT

Abstract: We give a new characterization of the vertical-strip LLT polynomials $\mathrm{LLT}_P(x;q)$ as the unique family of symmetric functions that satisfy certain combinatorial relations. This characterization is then used to prove an explicit combinatorial expansion of vertical-strip LLT polynomials in terms of elementary symmetric functions. Such formulas were conjectured independently by A. Garsia et al. and the first named author, and are governed by the combinatorics of orientations of unit-interval graphs. The obtained expansion is manifestly positive if $q$ is replaced by $q+1$, thus recovering a recent result of M. D'Adderio. Our results are based on linear relations among LLT polynomials that arise in the work of D'Adderio, and of E. Carlsson and A. Mellit. To some extent these relations are given new bijective proofs using colorings of unit-interval graphs. As a bonus we obtain a new characterization of chromatic quasisymmetric functions of unit-interval graphs.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube