Papers
Topics
Authors
Recent
2000 character limit reached

The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation

Published 20 Apr 2020 in math.ST, stat.ME, and stat.TH | (2004.09106v5)

Abstract: We provide a necessary and sufficient condition for the uniqueness of penalized least-squares estimators whose penalty term is given by a norm with a polytope unit ball, covering a wide range of methods including SLOPE, PACS, fused, clustered and classical LASSO as well as the related method of basis pursuit. We consider a strong type of uniqueness that is relevant for statistical problems. The uniqueness condition is geometric and involves how the row span of the design matrix intersects the faces of the dual norm unit ball, which for SLOPE is given by the signed permutahedron. Further considerations based this condition also allow to derive results on sparsity and clustering features. In particular, we define the notion of a SLOPE pattern to describe both sparsity and clustering properties of this method and also provide a geometric characterization of accessible SLOPE patterns.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.