Papers
Topics
Authors
Recent
Search
2000 character limit reached

Arbitrarily high-order structure-preserving schemes for the Gross-Pitaevskii equation with angular momentum rotation in three dimensions

Published 19 Apr 2020 in math.NA and cs.NA | (2004.08733v1)

Abstract: In this paper, we design a novel class of arbitrarily high-order structure-preserving numerical schemes for the time-dependent Gross-Pitaevskii equation with angular momentum rotation in three dimensions. Based on the idea of the scalar auxiliary variable approach which is proposed in the papers [J. Comput. Phys., 416 (2018) 353-407 and SIAM Rev., 61(2019) 474-506] for developing energy stable schemes for gradient flow systems, we firstly reformulate the Gross-Pitaevskii equation into an equivalent system with a modified energy conservation law. The reformulated system is then discretized by the Gauss collocation method in time and the standard Fourier pseudo-spectral method in space, respectively. We show that the proposed schemes can preserve the discrete mass and modified energy exactly. Numerical results are addressed to verify the efficiency and high-order accuracy of the proposed schemes.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.