Papers
Topics
Authors
Recent
2000 character limit reached

Effective gaps are not effective: quasipolynomial classical simulation of obstructed stoquastic Hamiltonians

Published 18 Apr 2020 in quant-ph, cond-mat.str-el, and cs.DS | (2004.08681v3)

Abstract: All known examples confirming the possibility of an exponential separation between classical simulation algorithms and stoquastic adiabatic quantum computing (AQC) exploit symmetries that constrain adiabatic dynamics to effective, symmetric subspaces. The symmetries produce large effective eigenvalue gaps, which in turn make adiabatic computation efficient. We present a classical algorithm to efficiently sample from the effective subspace of a $k$-local stoquastic Hamiltonian $H$, without a priori knowledge of its symmetries (or near-symmetries). Our algorithm maps any $k$-local Hamiltonian to a graph $G=(V,E)$ with $\lvert V \rvert = O\left(\mathrm{poly}(n)\right)$ where $n$ is the number of qubits. Given the well-known result of Babai, we exploit graph isomorphism to study the automorphisms of $G$ and arrive at an algorithm quasi-polynomial in $\lvert V\rvert$ for producing samples from the effective subspace eigenstates of $H$. Our results rule out exponential separations between stoquastic AQC and classical computation that arise from hidden symmetries in $k$-local Hamiltonians. Furthermore, our graph representation of $H$ is not limited to stoquastic Hamiltonians and may rule out corresponding obstructions in non-stoquastic cases, or be useful in studying additional properties of $k$-local Hamiltonians.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.