Papers
Topics
Authors
Recent
2000 character limit reached

A New Smoothing Algorithm for Jump Markov Linear Systems

Published 18 Apr 2020 in stat.ME, cs.SY, eess.SY, and stat.AP | (2004.08561v1)

Abstract: This paper presents a method for calculating the smoothed state distribution for Jump Markov Linear Systems. More specifically, the paper details a novel two-filter smoother that provides closed-form expressions for the smoothed hybrid state distribution. This distribution can be expressed as a Gaussian mixture with a known, but exponentially increasing, number of Gaussian components as the time index increases. This is accompanied by exponential growth in memory and computational requirements, which rapidly becomes intractable. To ameliorate this, we limit the number of allowed mixture terms by employing a Gaussian mixture reduction strategy, which results in a computationally tractable, but approximate smoothed distribution. The approximation error can be balanced against computational complexity in order to provide an accurate and practical smoothing algorithm that compares favourably to existing state-of-the-art approaches.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.