Papers
Topics
Authors
Recent
2000 character limit reached

Learned Video Compression with Feature-level Residuals

Published 17 Apr 2020 in eess.IV | (2004.08283v2)

Abstract: In this paper, we present an end-to-end video compression network for P-frame challenge on CLIC. We focus on deep neural network (DNN) based video compression, and improve the current frameworks from three aspects. First, we notice that pixel space residuals is sensitive to the prediction errors of optical flow based motion compensation. To suppress the relative influence, we propose to compress the residuals of image feature rather than the residuals of image pixels. Furthermore, we combine the advantages of both pixel-level and feature-level residual compression methods by model ensembling. Finally, we propose a step-by-step training strategy to improve the training efficiency of the whole framework. Experiment results indicate that our proposed method achieves 0.9968 MS-SSIM on CLIC validation set and 0.9967 MS-SSIM on test set.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.