Learning Strategies for Radar Clutter Classification (2004.08277v4)
Abstract: In this paper, we address the problem of classifying clutter returns in order to partition them into statistically homogeneous subsets. The classification procedure relies on a model for the observables including latent variables that is solved by the expectation-maximization algorithm. The derivations are carried out by accounting for three different cases for the structure of the clutter covariance matrix. A preliminary performance analysis highlights that the proposed technique is a viable means to cluster clutter returns over the range.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.