Papers
Topics
Authors
Recent
2000 character limit reached

Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques (2004.08262v2)

Published 17 Apr 2020 in hep-ex and physics.ins-det

Abstract: Machine-learning (ML) techniques are explored to identify and classify hadronic decays of highly Lorentz-boosted W/Z/Higgs bosons and top quarks. Techniques without ML have also been evaluated and are included for comparison. The identification performances of a variety of algorithms are characterized in simulated events and directly compared with data. The algorithms are validated using proton-proton collision data at $\sqrt{s} =$ 13 TeV, corresponding to an integrated luminosity of 35.9 fb${-1}$. Systematic uncertainties are assessed by comparing the results obtained using simulation and collision data. The new techniques studied in this paper provide significant performance improvements over non-ML techniques, reducing the background rate by up to an order of magnitude at the same signal efficiency.

Citations (129)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.