Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graphical complexes of groups

Published 17 Apr 2020 in math.GR | (2004.08187v1)

Abstract: We introduce graphical complexes of groups, which can be thought of as a generalisation of Coxeter systems with 1-dimensional nerves. We show that these complexes are strictly developable, and we equip the resulting Basic Construction with three structures of non-positive curvature: piecewise linear CAT(0), C(6) graphical small cancellation, and a systolic one. We then use these structures to establish various properties of the fundamental groups of these complexes, such as biautomaticity and Tits Alternative. We isolate an easily checkable condition implying hyperbolicity of the fundamental groups, and we construct some non-hyperbolic examples. We also briefly discuss a parallel theory of C(4)-T(4) graphical complexes of groups and outline their basic properties.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.