Uniformly branching trees
Abstract: A quasiconformal tree $T$ is a (compact) metric tree that is doubling and of bounded turning. We call $T$ trivalent if every branch point of $T$ has exactly three branches. If the set of branch points is uniformly relatively separated and uniformly relatively dense, we say that $T$ is uniformly branching. We prove that a metric space $T$ is quasisymmetrically equivalent to the continuum self-similar tree if and only if it is a trivalent quasiconformal tree that is uniformly branching. In particular, any two trees of this type are quasisymmetrically equivalent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.