Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Analyzing Reinforcement Learning Benchmarks with Random Weight Guessing (2004.07707v1)

Published 16 Apr 2020 in cs.LG, cs.AI, cs.MA, cs.NE, and stat.ML

Abstract: We propose a novel method for analyzing and visualizing the complexity of standard reinforcement learning (RL) benchmarks based on score distributions. A large number of policy networks are generated by randomly guessing their parameters, and then evaluated on the benchmark task; the study of their aggregated results provide insights into the benchmark complexity. Our method guarantees objectivity of evaluation by sidestepping learning altogether: the policy network parameters are generated using Random Weight Guessing (RWG), making our method agnostic to (i) the classic RL setup, (ii) any learning algorithm, and (iii) hyperparameter tuning. We show that this approach isolates the environment complexity, highlights specific types of challenges, and provides a proper foundation for the statistical analysis of the task's difficulty. We test our approach on a variety of classic control benchmarks from the OpenAI Gym, where we show that small untrained networks can provide a robust baseline for a variety of tasks. The networks generated often show good performance even without gradual learning, incidentally highlighting the triviality of a few popular benchmarks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com