Bourgain-Brezis-Mironescu Domains
Abstract: Bourgain et al.(2001) proved that for $p>1$ and smooth bounded domain $\Omega\subseteq\mathbb{R}N$, \begin{equation*} \lim\limits_{s\to1}(1-s)\iint \limits_{\Omega \times \Omega}\frac{\lvert f(x)-f(y) \rvertp}{\lvert x-y \rvert{N+sp}}dx dy=\kappa \int \limits_{\Omega}\lvert \nabla f(x) \rvertp dx \end{equation*} for all $f\in Lp(\Omega)$. This gives a characterization of $W{1,p}(\Omega)$ by means of $W{s,p}(\Omega)$ seminorms only. For the case $p=1$, D\'avila(2002) proved that when $\Omega$ is a bounded domain with Lipschitz boundary, \begin{equation*} \lim\limits_{s\to1}(1-s)\iint \limits_{\Omega \times \Omega}\frac{\lvert f(x)-f(y) \rvert}{\lvert x-y \rvert{N+s}}dx dy=\kappa [f]_{BV(\Omega)} \end{equation*} for all $f\in L1(\Omega)$. This characterizes $BV(\Omega)$ in terms of $W{s,1}(\Omega)$ seminorm. In this paper we extend the first result and partially extend the second result to extension domains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.