On the Linguistic Capacity of Real-Time Counter Automata
Abstract: Counter machines have achieved a newfound relevance to the field of NLP: recent work suggests some strong-performing recurrent neural networks utilize their memory as counters. Thus, one potential way to understand the success of these networks is to revisit the theory of counter computation. Therefore, we study the abilities of real-time counter machines as formal grammars, focusing on formal properties that are relevant for NLP models. We first show that several variants of the counter machine converge to express the same class of formal languages. We also prove that counter languages are closed under complement, union, intersection, and many other common set operations. Next, we show that counter machines cannot evaluate boolean expressions, even though they can weakly validate their syntax. This has implications for the interpretability and evaluation of neural network systems: successfully matching syntactic patterns does not guarantee that counter memory accurately encodes compositional semantics. Finally, we consider whether counter languages are semilinear. This work makes general contributions to the theory of formal languages that are of potential interest for understanding recurrent neural networks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.