Papers
Topics
Authors
Recent
2000 character limit reached

Resolution and Tor Algebra Structures of Grade 3 Ideals Defining Compressed Rings (2004.06691v2)

Published 14 Apr 2020 in math.AC

Abstract: Let $R=k[x,y,z]$ be a standard graded $3$-variable polynomial ring, where $k$ denotes any field. We study grade $3$ homogeneous ideals $I \subseteq R$ defining compressed rings with socle $k(-s){\ell} \oplus k(-2s+1)$, where $s \geq3$ and $\ell \geq 1$ are integers. The case for $\ell =1$ was studied in a previous paper by the author; a generically minimal resolution was constructed for all such ideals. More recently, this resolution is generalized in the guise of (iterated) trimming complexes. In this paper, we show that all ideals of the above form are resolved by an iterated trimming complex. Moreover, we apply this machinery to construct ideals $I$ such that $R/I$ is a ring of Tor algebra class $G (r)$ for some fixed $r \geq2$, and $R/I$ may be chosen to have arbitrarily large type. In particular, this provides a new class of counterexamples to a conjecture of Avramov not already constructed by Christensen, Veliche, and Weyman.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.