Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Higher Structure Identity Principle

Published 14 Apr 2020 in math.LO, cs.LO, and math.CT | (2004.06572v3)

Abstract: The ordinary Structure Identity Principle states that any property of set-level structures (e.g., posets, groups, rings, fields) definable in Univalent Foundations is invariant under isomorphism: more specifically, identifications of structures coincide with isomorphisms. We prove a version of this principle for a wide range of higher-categorical structures, adapting FOLDS-signatures to specify a general class of structures, and using two-level type theory to treat all categorical dimensions uniformly. As in the previously known case of 1-categories (which is an instance of our theory), the structures themselves must satisfy a local univalence principle, stating that identifications coincide with "isomorphisms" between elements of the structure. Our main technical achievement is a definition of such isomorphisms, which we call "indiscernibilities", using only the dependency structure rather than any notion of composition.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 10 likes about this paper.