A Higher Structure Identity Principle
Abstract: The ordinary Structure Identity Principle states that any property of set-level structures (e.g., posets, groups, rings, fields) definable in Univalent Foundations is invariant under isomorphism: more specifically, identifications of structures coincide with isomorphisms. We prove a version of this principle for a wide range of higher-categorical structures, adapting FOLDS-signatures to specify a general class of structures, and using two-level type theory to treat all categorical dimensions uniformly. As in the previously known case of 1-categories (which is an instance of our theory), the structures themselves must satisfy a local univalence principle, stating that identifications coincide with "isomorphisms" between elements of the structure. Our main technical achievement is a definition of such isomorphisms, which we call "indiscernibilities", using only the dependency structure rather than any notion of composition.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.