Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Entwined Learning Head Pose and Face Alignment Inside an Attentional Cascade with Doubly-Conditional fusion

Published 14 Apr 2020 in cs.CV and cs.LG | (2004.06558v1)

Abstract: Head pose estimation and face alignment constitute a backbone preprocessing for many applications relying on face analysis. While both are closely related tasks, they are generally addressed separately, e.g. by deducing the head pose from the landmark locations. In this paper, we propose to entwine face alignment and head pose tasks inside an attentional cascade. This cascade uses a geometry transfer network for integrating heterogeneous annotations to enhance landmark localization accuracy. Furthermore, we propose a doubly-conditional fusion scheme to select relevant feature maps, and regions thereof, based on a current head pose and landmark localization estimate. We empirically show the benefit of entwining head pose and landmark localization objectives inside our architecture, and that the proposed AC-DC model enhances the state-of-the-art accuracy on multiple databases for both face alignment and head pose estimation tasks.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.