Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tag Embedding Based Personalized Point Of Interest Recommendation System

Published 14 Apr 2020 in cs.IR | (2004.06389v2)

Abstract: Personalized Point of Interest recommendation is very helpful for satisfying users' needs at new places. In this article, we propose a tag embedding based method for Personalized Recommendation of Point Of Interest. We model the relationship between tags corresponding to Point Of Interest. The model provides representative embedding corresponds to a tag in a way that related tags will be closer. We model Point of Interest-based on tag embedding and also model the users (user profile) based on the Point Of Interest rated by them. finally, we rank the user's candidate Point Of Interest based on cosine similarity between user's embedding and Point of Interest's embedding. Further, we find the parameters required to model user by discrete optimizing over different measures (like ndcg@5, MRR, ...). We also analyze the result while considering the same parameters for all users and individual parameters for each user. Along with it we also analyze the effect on the result while changing the dataset to model the relationship between tags. Our method also minimizes the privacy leak issue. We used TREC Contextual Suggestion 2016 Phase 2 dataset and have significant improvement over all the measures on the state of the art method. It improves ndcg@5 by 12.8%, p@5 by 4.3%, and MRR by 7.8%, which shows the effectiveness of the method.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.