Papers
Topics
Authors
Recent
2000 character limit reached

On the rational homotopy type of intersection spaces (2004.05932v1)

Published 13 Apr 2020 in math.AT

Abstract: Banagl's method of intersection spaces allows to modify certain types of stratified pseudomanifolds near the singular set in such a way that the rational Betti numbers of the modified spaces satisfy generalized Poincar\'{e} duality in analogy with Goresky-MacPherson's intersection homology. In the case of one isolated singularity, we show that the duality isomorphism comes from a nondegenerate intersection pairing which depends on the choice of a chain representative of the fundamental class of the regular stratum. On the technical side, we use piecewise linear polynomial differential forms due to Sullivan to define a suitable commutative cochain algebra model for intersection spaces. Our construction parallels Banagl's commutative cochain algebra of smooth differential forms modeling intersection space cohomology, and we show that both algebras are weakly equivalent.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.