Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

What You See and What You Don't See: The Hidden Moments of a Probability Distribution (2004.05894v1)

Published 5 Apr 2020 in q-fin.ST and q-fin.RM

Abstract: Empirical distributions have their in-sample maxima as natural censoring. We look at the "hidden tail", that is, the part of the distribution in excess of the maximum for a sample size of $n$. Using extreme value theory, we examine the properties of the hidden tail and calculate its moments of order $p$. The method is useful in showing how large a bias one can expect, for a given $n$, between the visible in-sample mean and the true statistical mean (or higher moments), which is considerable for $\alpha$ close to 1. Among other properties, we note that the "hidden" moment of order $0$, that is, the exceedance probability for power law distributions, follows an exponential distribution and has for expectation $\frac{1}{n}$ regardless of the parametrization of the scale and tail index.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Youtube Logo Streamline Icon: https://streamlinehq.com