Wavelet series representation for multifractional multistable Riemann-Liouville process (2004.05874v1)
Abstract: The main goal of this paper is to construct a wavelet-type random series representation for a random field $X$, defined by a multistable stochastic integral, which generates a multifractional multistable Riemann-Liouville (mmRL) process $Y$. Such a representation provides, among other things, an efficient method of simulation of paths of $Y$. In order to obtain it, we expand in the Haar basis the integrand associated with $X$ and we use some fundamental properties of multistable stochastic integrals. Then, thanks to the Abel's summation rule and the Doob's maximal inequality for discrete submartingales, we show that this wavelet-type random series representation of $X$ is convergent in a strong sense: almost surely in some spaces of continuous functions. Also, we determine an estimate of its almost sure rate of convergence in these spaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.