Papers
Topics
Authors
Recent
2000 character limit reached

Wavelet series representation for multifractional multistable Riemann-Liouville process

Published 13 Apr 2020 in math.PR | (2004.05874v1)

Abstract: The main goal of this paper is to construct a wavelet-type random series representation for a random field $X$, defined by a multistable stochastic integral, which generates a multifractional multistable Riemann-Liouville (mmRL) process $Y$. Such a representation provides, among other things, an efficient method of simulation of paths of $Y$. In order to obtain it, we expand in the Haar basis the integrand associated with $X$ and we use some fundamental properties of multistable stochastic integrals. Then, thanks to the Abel's summation rule and the Doob's maximal inequality for discrete submartingales, we show that this wavelet-type random series representation of $X$ is convergent in a strong sense: almost surely in some spaces of continuous functions. Also, we determine an estimate of its almost sure rate of convergence in these spaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.