On the monopole Lefschetz number of finite order diffeomorphisms
Abstract: Let $K$ be a knot in an integral homology 3-sphere $Y$, and $\Sigma$ the corresponding $n$-fold cyclic branched cover. Assuming that $\Sigma$ is a rational homology sphere (which is always the case when $n$ is a prime power), we give a formula for the Lefschetz number of the action that the covering translation induces on the reduced monopole homology of $\Sigma$. The proof relies on a careful analysis of the Seiberg--Witten equations on 3-orbifolds and of various $\eta$-invariants. We give several applications of our formula: (1) we calculate the Seiberg--Witten and Furuta--Ohta invariants for the mapping tori of all semi-free actions of $Z/n$ on integral homology 3-spheres; (2) we give a novel obstruction (in terms of the Jones polynomial) for the branched cover of a knot in $S3$ being an $L$-space; (3) we give a new set of knot concordance invariants in terms of the monopole Lefschetz numbers of covering translations on the branched covers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.