Papers
Topics
Authors
Recent
2000 character limit reached

Attribute-based Regularization of Latent Spaces for Variational Auto-Encoders

Published 11 Apr 2020 in cs.LG and stat.ML | (2004.05485v3)

Abstract: Selective manipulation of data attributes using deep generative models is an active area of research. In this paper, we present a novel method to structure the latent space of a Variational Auto-Encoder (VAE) to encode different continuous-valued attributes explicitly. This is accomplished by using an attribute regularization loss which enforces a monotonic relationship between the attribute values and the latent code of the dimension along which the attribute is to be encoded. Consequently, post-training, the model can be used to manipulate the attribute by simply changing the latent code of the corresponding regularized dimension. The results obtained from several quantitative and qualitative experiments show that the proposed method leads to disentangled and interpretable latent spaces that can be used to effectively manipulate a wide range of data attributes spanning image and symbolic music domains.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.