A lower bound on the saturation number, and graphs for which it is sharp (2004.05410v2)
Abstract: Let $H$ be a fixed graph. We say that a graph $G$ is $H$-saturated if it has no subgraph isomorphic to $H$, but the addition of any edge to $G$ results in an $H$-subgraph. The saturation number $\mathrm{sat}(H,n)$ is the minimum number of edges in an $H$-saturated graph on $n$ vertices. K\'aszonyi and Tuza, in 1986, gave a general upper bound on the saturation number of a graph $H$, but a nontrivial lower bound has remained elusive. In this paper we give a general lower bound on $\mathrm{sat}(H,n)$ and prove that it is asymptotically sharp (up to an additive constant) on a large class of graphs. This class includes all threshold graphs and many graphs for which the saturation number was previously determined exactly. Our work thus gives an asymptotic common generalization of several earlier results. The class also includes disjoint unions of cliques, allowing us to address an open problem of Faudree, Ferrara, Gould, and Jacobson.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.