Large Genus Asymptotics for Intersection Numbers and Principal Strata Volumes of Quadratic Differentials (2004.05042v1)
Abstract: In this paper we analyze the large genus asymptotics for intersection numbers between $\psi$-classes, also called correlators, on the moduli space of stable curves. Our proofs proceed through a combinatorial analysis of the recursive relations (Virasoro constraints) that uniquely determine these correlators, together with a comparison between the coefficients in these relations with the jump probabilities of a certain asymmetric simple random walk. As an application of this result, we provide the large genus limits for Masur-Veech volumes and area Siegel-Veech constants associated with principal strata in the moduli space of quadratic differentials. These confirm predictions of Delecroix-Goujard-Zograf-Zorich from 2019.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.